Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
1.
Trop Anim Health Prod ; 56(4): 134, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642256

RESUMO

Successful breeding depends on feeding. The present study aims to evaluate the Carica papaya seed effect on the growth performance of rabbits. The zootechnical parameters studied are weight growth, average daily gain, Feed Conversion Ratio, and carcass characteristics of kits. The experiment was conducted on 48 rabbits, divided into 4 groups, for 6 weeks. Forty-eight rabbits were divided into four (04) groups of 3 repetitions of 4 rabbits. The animals were fed diets containing various levels of papaya seed powder at variable contents: 0% (group T0), 4% (group T1), 6% (group T2), and 8% (group T3). At the end of the experiment, three animals were slaughtered in each animal group to assess the quality of the carcasses and organs. 6% of the seeds of Carica papaya significantly improved (p < 0.05) the average daily gain of the kits: T2 (22.40 g / d) compared to the T0 group (11.32 g / d), T1 (12.20 g / d) and T3 (17.53 g / d). The best Feed Conversion Ratio (0.80) was recorded in the animals of group T2. In contrast, the highest carcass yield was recorded in the rabbits of group T3 (62.70%). In conclusion, 6% was optimal in the feed rations of fattened rabbits to improve production performance. Breeders can consider the benefits of introducing Carica papaya seeds into the rabbits' diet.


Assuntos
Carica , Coelhos , Animais , Melhoramento Vegetal , Sementes , Dieta/veterinária , Ração Animal
2.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611765

RESUMO

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Assuntos
Carica , Carica/genética , Antocianinas , Reguladores de Crescimento de Plantas , Transcriptoma , Espectrometria de Massas em Tandem , Metaboloma , Verduras
3.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632280

RESUMO

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Assuntos
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteômica , Processos de Determinação Sexual , Flores/genética , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474290

RESUMO

Commercial papaya varieties grown in Australia vary greatly in taste and aroma. Previous profiling has identified undesirable 'off tastes' in existing varieties, discouraging a portion of the population from consuming papayas. Our focus on enhancing preferred flavours led to an exploration of the genetic mechanisms and biosynthesis pathways that underlie these desired taste profiles. To identify genes associated with consumer-preferred flavours, we conducted whole RNA sequencing and de novo genome assembly on papaya varieties RB1 (known for its sweet flavour and floral aroma) and 1B (less favoured due to its bitter taste and musty aroma) at both ripe and unripe stages. In total, 180,368 transcripts were generated, and 118 transcripts related to flavours were differentially expressed between the two varieties at the ripe stage. Five genes (cpBGH3B, cpPFP, cpSUS, cpGES and cpLIS) were validated through qPCR and significantly differentially expressed. These genes are suggested to play key roles in sucrose metabolism and aromatic compound production pathways, holding promise for future selective breeding strategies. Further exploration will involve assessing their potential across broader germplasm and various growth environments.


Assuntos
Carica , Paladar , Carica/genética , Austrália , Percepção Gustatória , Aromatizantes
5.
Trop Anim Health Prod ; 56(2): 84, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386155

RESUMO

The study aimed to evaluate the effects of Carica papaya peel meal-based diet on spermiogram and reaction time in rabbit bucks. Ripe pawpaw fruits were harvested during the dry season. The peels were carefully removed from the pulp and sun-dried for a week. Afterward, they were ground and included in the test diets as pawpaw peel meal (PPM) at inclusion rates of 0%, 15%, and 30%. Rabbit bucks (n = 15) were randomly separated into three groups of five bucks and labeled as groups A, B, and C. Group A, the control group (0%), was fed the basal protein diet (BD), group B (PPM 15) was given a PPM-based diet (15%), while C (PPM 30) was given diet composed of PPM (30%). Semen samples were collected and evaluated fortnightly for 14 weeks. The reaction time and mean ejaculate volume were lower (P < 0.05) in the treatment groups than in the control. Sperm motility and concentration decreased significantly (P < 0.05) across the groups from week 4 to the end of the experiment. Bucks fed PPM 15%, and PPM 30% had significantly (P < 0.05) higher percentages of dead sperm cells and total spermatozoa abnormalities. The control had (86%) normal spermatozoa morphology while those of PPM 15% and PPM 30% were (61%) and (52%), respectively. PPM 30% had the highest abnormal spermatozoa (47%) compared to PPM 15% (38%) and control (13%). The findings indicate that pawpaw peels up to 15% and 30% in the diet have a negative effect on spermiogram.


Assuntos
Asimina , Carica , Masculino , Animais , Coelhos , Tempo de Reação , Motilidade dos Espermatozoides , Sementes , Dieta/veterinária , Verduras
6.
Carbohydr Polym ; 331: 121878, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388061

RESUMO

Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.


Assuntos
Carica , Neoplasias do Colo , Ratos , Animais , Camundongos , Pectinas/farmacologia , Pectinas/química , Carica/química , Células NIH 3T3 , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Proliferação de Células , Colo
7.
Int J Biol Macromol ; 260(Pt 1): 129153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228198

RESUMO

This study explores the sustainable utilization of wastes from a papaya plant (papaya peels (PP), papaya seeds (PS), leaf-stem (PL)) and dried green tea residues (GTR) for the synthesis of bioplastics. The dried GTR were individually blended with each papaya waste extract and then boiled in water to get three composite papaya plant waste-green tea supernatants. Potato starch and gelatin-based functional films were prepared by integrating each with the composite papaya waste-green tea supernatant liquid. This work introduces a dissolved organic matter (DOM) study to the field of bioplastics, with the goal of identifying the organic components and macromolecules inherent in the PW supernatants. When compared with the films prepared solely from papaya waste (PW) supernatants, PW-GTR composite supernatant films prevent UV light transmission with superior antioxidant and mechanical properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM) were utilized to characterize the starch and gelatin PW-GTR films. Owing to the exceptional antioxidant, UV barrier, and remarkable biodegradable properties of the starch/PW/GTR and gelatin/PW/GTR composite films, make them ideal for use in food packaging applications.


Assuntos
Carica , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Gelatina/química , Antioxidantes/química , Chá/química , Amido/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Food Sci ; 89(2): 1114-1126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161280

RESUMO

Papaya postharvest management using low-temperature storage is discouraged as it is a tropical fruit. Extensive research is going on to preserve papaya quality at ambient storage using edible coatings and its composites. The present investigation examined the effects of an eco-safe composite edible coating consisting of hydrocolloid carboxymethyl cellulose (CMC) (1%), guar gum (1.5%), xanthan gum (0.3%), and Gum Arabic (10%) combined with papaya leaf extract (PLE) (1:1 ratio by volume) applied as dip treatment on "Red Lady" papaya fruit at ambient storage condition. Among all the attempted treatments, "PLE incorporated with CMC (1%)" was found to be the best, as the treated fruit exhibited the highest levels of biochemicals, whereas the lowest levels of physiological and enzymatic activity, which positively affected the shelf life. The "CMC + PLE" treatment enhanced the fruit gloss score by 70.1%, phenolics by 6.1%, ascorbic acid by 22.3%, total carotenoid content by 7.4%, and fruit predilection score by 22.0% over the control fruit. However, it lowered (controlling) the physiological loss in weight by 51.0%, decay incidence by 66.6%, and polygalacturonase and pectin methylesterase activity by 24.92% and 35.29%, respectively, over control. Moreover, this treatment exhibited the highest fruit purchase predilection score and prolonged the storage life for >3 days on the physiological loss standard basis (≤10%). This study indicates that "CMC (1%) with PLE (1:1)" composite coating application on papaya under ambient conditions might be an effective, environmentally friendly, and health-friendly way to retain the quality and extend the storage life.


Assuntos
Carica , Filmes Comestíveis , Humanos , Conservação de Alimentos , Frutas/química , Extratos Vegetais/análise
9.
Mol Biol Rep ; 51(1): 119, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227086

RESUMO

BACKGROUND: Papaya (Carica papaya) is a tropical fruit of great economic and nutritional importance, loved for its sweet and delicious flesh. However, papaya cultivation faces serious challenges in the form of Begomovirus attacks. Begomoviruses are a group of viruses that pose a serious threat to plants worldwide. Including papaya, Begomovirus has become a significant threat to papaya production in various parts of the world and has been identified in several regions in Indonesia. METHODS: DNA was extracted from seven samples representing different papaya growing areas using a Plant Genomic DNA Mini Kit. Genomic DNA from the samples was subjected to PCR using universal primers of AC2, AC1, SPG1 and SPG2. The PCR products then sequenced using the dideoxy (Sanger) approach. The obtained sequence then compared to the gene bank using BLAST software available at NCBI. Multiple sequence alignment and phylogenetic tree construction were analyzed using the MEGA11 program. RESULTS: Detection based on viral nucleic acid in papaya plants in Pesawaran, Lampung Province with seven sampling points using universal primers SPG1/SPG2 showed positive results for Begomovirus infection with visible DNA bands measuring ± 900 bp. Direct nucleotide sequencing using SPG1/SPG2 primers for the AC2 and AC1 genes of the Begomovirus and confirmed by the BLAST program showed that papaya samples were infected with Ageratum yellow vein virus (AYVV). The phylogenetic results show that AYVV from papaya samples has a close relationship with the AYVV group from several other countries, with 98% homology. CONCLUSION: In the papaya cultivation area in Pesawaran, Lampung province, it was identified as Begomovirus, Ageratum yellow vein virus (AYVV) species and is closely related to the AYVV group from several other countries. Overall, our study further suggests that Ageratum acts as an alternative host and reservoir for Begomovirus.


Assuntos
Begomovirus , Carica , Doenças Genéticas Ligadas ao Cromossomo X , Deficiência Intelectual , Paraplegia Espástica Hereditária , Begomovirus/genética , Indonésia , Filogenia , Verduras , Primers do DNA , DNA de Plantas
10.
BMC Complement Med Ther ; 24(1): 18, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172797

RESUMO

Prediabetes is characterized by a cluster of glycemic parameters higher than normal but below the threshold of type 2 diabetes mellitus (T2DM). In recent years, phytochemical-rich plant extracts have gained popularity as therapeutic agents for metabolic disorders. This study investigated the effects of papaya leaf (PL) juice supplementation on blood glucose levels in diet-induced obese and prediabetic adult mice. B65JL F1 mice (n = 20) at 12-14 months old were fed a high fat/sugar diet (HFHS) for 120 days. Mice were switched to restricted rodent chow of 3 g feed/30 g body weight/day, supplemented with 3 g/100 mL PL juice for 30 days. HFHS diet remarkably increased fasting plasma glucose levels from 114 ± 6.54 mg/dL to 192.7 ± 10.1 mg/dL and body weight from 32.5 ± 1.6 to 50.3 ± 4.1 g. HFHS diet results in hyperglycemia, insulin resistance, hyperlipidemia, and liver steatosis. The combination of PL juice and restricted diet significantly reduced body weight and fasting blood glucose levels to 43.75 ± 1.4 g and 126.25 ± 3.2 mg/dl, respectively. Moreover, PL juice with a restricted diet significantly improved lipid profile: cholesterol from 204 to 150 mg/dL, LDL-c from 110.4 to 50 mg/dL, and triglyceride from 93.7 to 60 mg/dL. Additionally, PL juice combined with a restricted diet significantly reduced adiposity, reversed fatty liver, and restored skeletal muscle Glut4 and phosphorylated (p-AKT (ser473). This study demonstrated that supplementation of PL juice with a restricted diet was more effective than a restricted diet alone in reversing major symptoms related to prediabetic and obesity conditions.


Assuntos
Carica , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Estado Pré-Diabético , Camundongos , Animais , Açúcares/uso terapêutico , Carica/metabolismo , Glicemia/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fígado Gorduroso/tratamento farmacológico , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Homeostase , Folhas de Planta
11.
BMC Plant Biol ; 24(1): 68, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262956

RESUMO

BACKGROUND: Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS: Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION: This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.


Assuntos
Carica , Quitosana , Ciclopropanos , Compostos Organofosforados , Frutas , Filogenia , Ácido Ascórbico
12.
PLoS One ; 19(1): e0297574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289915

RESUMO

INTRODUCTION: The ripening of fleshy fruits is a developmental process that involves changes in color, texture, aroma, nutrients, and diversity of microbiomes. Some microorganisms, specially, bacteria and molds are responsible for postharvest spoilage of fruits. Thus, this study is aimed at evaluating the alterations in microbiome and physico-chemical properties of selected fruits at different ripening stages. METHODS: Totally, 108 fresh fruit samples of Musa paradisiaca, Citrus sinensis and Carica papaya at three ripening stages were collected and processed in this study. The biochemical methods and MALD-TOF MS were used in identification. The physico-chemical properties of all samples were analyzed using standard methods. RESULTS: The minimum counts (6.74± 0.48-6.76± 0.42 log CFU/mL) and the maximum count (7.51± 0.43-7.96± 0.34 log CFU/mL) of AMB in all fruit samples was observed at mature green and overripe stages of the fruits, respectively. The ripening stage has significantly affected the microbial counts (P < 0.05) in all fruits, except counts of Enterobacteriaceae in banana and orange, and fungal counts in orange. The bacterial community of all fruits was predominated by B. cereus (33.7%), A. faecalis (17.3%), P. putida (15.2%), M. morganii (11.1%), S. sciuri (6.6%) and S. epidermidis (4.9%); while the fungal microbiome was constituted by Candida spp. (33.9%) followed by Saccharomyces spp. (18.1%) and Aspergillus spp. (16.3%). The ripening stages have also significantly affected the physico-chemical property in all samples. Accordingly, the lowest pH (3.53) and highest content of ascorbic acid (69.87 mg/100g) were observed in mature green oranges and overripe papaya, respectively, while the maximum concentration of total sugar (17.87%) and reducing sugar (14.20%) were recorded in overripe bananas. CONCLUSION: The presence of some potential human pathogens and spoilage microorganisms in fruit samples could contribute to post-harvest product losses besides the potential health risk associated with consumption of the tainted fruits. Hence, proper safety management practices and preservation mechanisms should be developed and put in place to ensure consumers safety against pathogens besides minimizing product losses through microbial spoilage.


Assuntos
Carica , Citrus sinensis , Microbiota , Musa , Humanos , Carica/química , Frutas/química , Carboidratos da Dieta/análise , Bactérias , Açúcares/análise
13.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050657

RESUMO

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Assuntos
Produtos Biológicos , Carica , Humanos , Antioxidantes , Emulsões , Emolientes , Flavonoides , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Água
14.
Mol Neurobiol ; 61(1): 450-464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37626269

RESUMO

Mild cognitive impairment (MCI) is defined as inter-stage between normal cognitive aging and major neurocognitive disorder (MND). This state of decay is a crucial factor in treatment to prevent the progression to MND. In this study, our group developed a virtual screening process to evaluate 2568 phytochemical compounds against 5 key proteins associated with MCI and MND. As a result, two potential candidates were identified: carpaine, found in Carica papaya leaves, and punicalagin, present in Punica granatum. A model of cognitive impairment (CI) was developed in 10-month-old male Sprague Dawley rats by administering aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 30 days. After AlCl3 administration period, one of the groups received carpaine and punicalagin in a phytochemical extract (PE) by oral gavage for 30 days. Novel object recognition test (NOR) was assessed at three different time points (T1 - before CI, T2 - after CI, and T3 - after PE treatment). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were identified in the hippocampus of rats at the end of the study period. After administration of AlCl3, a reduction in discrimination index vs control rats (CI = 0.012 ± 0.08 vs Control = 0.076 ± 0.03), was observed. After phytochemical extract treatment, a significant increase in discrimination index values was observed in the PE group 0.4643 ± 0.13 vs CI group 0.012 ± 0.08. Additionally, the evaluation of immunohistochemistry showed an increase in GFAP positivity in the hippocampus of the CI groups, while a slight decrease was observed in the PE group. This work addressed a comprehensive methodology that utilized in silico tools to identify phytochemical compounds (carpaine and punicalagin) as potential candidates for affecting key proteins in CI. The phytochemical extract containing carpaine and punicalagin resulted in a trend in the decrease of GFAP expression in the hippocampus and improved recognition memory in rats with CI induced by age and AlCl3 administration.


Assuntos
Carica , Disfunção Cognitiva , Taninos Hidrolisáveis , Punica granatum , Camundongos , Ratos , Masculino , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carica/química , Modelos Animais de Doenças , Ratos Sprague-Dawley , Disfunção Cognitiva/tratamento farmacológico , Compostos Fitoquímicos , Sementes
16.
Bioprocess Biosyst Eng ; 47(1): 65-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086975

RESUMO

This study describes an effective and eco-friendly approach to the synthesis of zinc oxide nanoparticles (ZnONPs) utilizing papaya fruit peel extract (PPE). The structural evaluation and morphological features of synthesized ZnONPs were examined using various physicochemical analyses. The formulated ZnONPs were spherical to hexagonal in shape with ⁓ 170 nm in diameter. ZnONPs exhibited improved antioxidant potential in terms of DPPH radical scavenging activity (IC50 = 98.74 µg/ml) and ferric-reducing potential compared with PPE. The antibacterial activity of ZnONPs was measured against pathogenic strains of Salmonella typhi, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The biosynthesized ZnONPs showed potential antibacterial efficacy against all microbes. In addition, ZnONPs exhibited potential photocatalytic activity in rhodamine B degradation in the presence of sunlight. The results indicated that papaya peels, which are these fruit wastes, could be helpful for the green synthesis of ZnONPs with good dose-responsive antioxidant, antibacterial, and photocatalytic activities.


Assuntos
Carica , Nanopartículas Metálicas , Óxido de Zinco , Antioxidantes/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli , Extratos Vegetais/química
17.
J Trace Elem Med Biol ; 81: 127324, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944220

RESUMO

BACKGROUND: Cadmium is widely reported to interfere with the proper functioning of cells by disrupting cellular redox balance, causing apoptosis, and leading to hepatocellular damage, neurotoxicity, pulmonary edema, cancer, and cardiac and neurodegenerative diseases. Treatment of Cd toxicity with drugs brings undesirable side effects, making it necessary to remove Cd from the body safely without harmful effects. OBJECTIVE: This study aimed to determine how Cd causing malfunctioning of cells could be treated with antioxidant-rich avocado and papaya fruit juices. This work fixated on elucidating and comparing the effects of avocado and papaya fruit juice on Cd-dependent impairment in memory and spatial learning. In addition, various markers of tissue damage, such as the concentration of biomarkers in liver and kidney tissue, the expression of antioxidant enzymes and Cd-induced lipid peroxidation, were analyzed. METHODOLOGY: in silico studies of the phytochemical constituents of avocado and papaya (ligands) were docked against antioxidant enzymes Catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) as macromolecules showed strong hydrogen binding with significant binding capacities. To develop the Cd in vivo model, rats were administered CdCl2 (200 ppm) in drinking water for 7 weeks. After induction of Cd toxicity, rats were post-treated with avocado and papaya (10% w/v each) in a standard diet. After post-treatment, memory and learning were assessed using the Morris water maze behavioural test. Biochemical tests for liver and kidney biomarkers were monitored. To determine the level of ROS, lipid peroxidation was determined by Malondialdehyde (MDA) assay. Gene expression of SOD, CAT and GPx were determined via qRT-PCR. RESULTS: This study demonstrated that Cd accumulation in the liver, kidney and hippocampal tissues was reduced after treatment with avocado and papaya. SOD, CAT and GPX gene expression were upregulated after avocado and papaya juice treatment. Moreover, a comparative analysis between avocado and papaya fruit juices clarified that papaya has more active potential for improving memory and learning, upregulating the expression of antioxidant enzymes, and reducing lipid peroxidation in the liver, kidney, and hippocampus. CONCLUSION: This study suggests that a diet containing papaya and avocado can help treat the lethal effects caused by Cd. Because their active constituents can improve health at the cellular and molecular levels.


Assuntos
Carica , Doença Hepática Induzida por Substâncias e Drogas , Persea , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/análise , Carica/metabolismo , Persea/metabolismo , Frutas/química , Frutas/metabolismo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos
18.
Food Chem ; 439: 138168, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103491

RESUMO

Papaya is a climacteric fruit that undergoes rapid ripening and quality deterioration during postharvest storage, resulting in significant economic losses. This study employed biochemical techniques and targeted metabolomics to investigate the impact of exogenous AsA + CTS application on the energy metabolism regulation of papaya fruit during postharvest storage. We found that AsA + CTS treatment significantly increased the levels of key metabolic compounds and enzymes, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and the energy charge, as well as the succinic acid content and the activities of succinic dehydrogenase (SDH), cytochrome c oxidase (CCO), H+-ATPase, and Ca2+-ATPase. Moreover, AsA + CTS coating augmented the nicotinamide adenine dinucleotide kinase (NADK) activity and increased the NADH and NADPH concentrations. Regarding sugar metabolism, it increased the activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase and raised d-glucose-6-phosphate levels. These findings suggest that AsA + CTS coating application can mitigate the metabolic deterioration and sustain a primary metabolism homeostasis in papaya fruit by enhancing the tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP), thereby preserving their quality attributes during postharvest storage.


Assuntos
Carica , Quitosana , Frutas/química , Ácido Ascórbico/análise , Quitosana/análise , Homeostase
19.
Colloids Surf B Biointerfaces ; 234: 113712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157762

RESUMO

In the present study, a film based on the gelatin skin of tilapia (Oreochromis niloticus) was developed, using surfactants and adding plant extract of pitomba seed (Talisia esculenta). The aim was to investigate the mechanical and barrier properties of the cover, as well as its effectiveness in conserving papayas against diseases caused by fungi. The film presented tensile strength of 38.78 MPa, elongation of 120.49%, and water vapor permeability of 5.90 g.mm.h-1.m2.kPa-1 when equally composed of SDS and Tween 80, in a percentage of 40% in relation to the total mass of the film. The films lasted 12 d in an environment with a relative humidity of 75% (25 ºC), longer than the shelf life of papaya (limited to 8 d). With applying the film with the extract, the incidence of diseases such as anthracnose, fusariosis, and stem rot caused by these microorganisms in papaya was reduced.


Assuntos
Carica , Ciclídeos , Sapindaceae , Tilápia , Animais , Gelatina , Extratos Vegetais , Havaí , Resistência à Tração , Permeabilidade , Embalagem de Alimentos
20.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069092

RESUMO

While fibrinolytic enzymes and thrombolytic agents offer assistance in treating cardiovascular diseases, the existing options are associated with a range of adverse effects. In our previous research, we successfully identified ficin, a naturally occurring cysteine protease that possesses unique fibrin and fibrinogenolytic enzymes, making it suitable for both preventing and treating cardiovascular disorders linked to thrombosis. Papain is a prominent cysteine protease derived from the latex of Carica papaya. The potential role of papain in preventing fibrino(geno)lytic, anticoagulant, and antithrombotic activities has not yet been investigated. Therefore, we examined how papain influences fibrinogen and the process of blood coagulation. Papain is highly stable at pH 4-11 and 37-60 °C via azocasein assay. In addition, SDS gel separation electrophoresis, zymography, and fibrin plate assays were used to determine fibrinogen and fibrinolysis activity. Papain has a molecular weight of around 37 kDa, and is highly effective in degrading fibrin, with a molecular weight of over 75 kDa. Furthermore, papain-based hemostatic performance was confirmed in blood coagulation tests, a blood clot lysis assay, and a κ-carrageenan rat tail thrombosis model, highlighting its strong efficacy in blood coagulation. Papain shows dose-dependent blood clot lysis activity, cleaves fibrinogen chains of Aα, Bß, and γ-bands, and significantly extends prothrombin time (PT) and activated partial thromboplastin time (aPTT). Moreover, the mean length of the infarcted regions in the tails of Sprague-Dawley rats with κ-carrageenan was shorter in rats administered 10 U/kg of papain than in streptokinase-treated rats. Thus, papain, a cysteine protease, has distinct fibrin and fibrinogenolytic properties, suggesting its potential for preventing or treating cardiovascular issues and thrombosis-related diseases.


Assuntos
Carica , Cisteína Proteases , Hemostáticos , Trombose , Ratos , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/química , Látex/química , Papaína , Anticoagulantes , Carragenina , Ratos Sprague-Dawley , Trombose/tratamento farmacológico , Fibrinogênio , Fibrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...